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Using Fekete’s method we obtain estimates for the L,-norms of minimal integral
generalized multivariate polynomials. We particularize these estimates for the cases
of ordinary polynomials and quasi-polynomials. We also show the existence of a

limit in the minimal quadratic deviations from zero for univariate integral polyno-
mials.  © 1999 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Let I be an interval of the real line, let H be a vector space of real func-

tions defined on I containing the polynomials and let | .| be a norm

defined on H. Any polynomial Q(x) % 0 with integral coefficients such that
1ol <1

is called a fundamental polynomial of 7 with respect to | - | (see [5]).

The existence of fundamental polynomials plays an important role in the
Theory of approximation of functions by polynomials with integral coef-
ficients. The first result in this direction was obtained by Hilbert [ 14] who
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established the existence of fundamental polynomials with respect to the
L,-norm whenever the length of the interval is less than 4. The analogous
result for the uniform norm follows from a well-known theorem of Fekete
[9]. Fekete’s method was extended by Aparicio (see [1,3,4]) to the
estimation of uniform and L,-norms of minimal integral generalized poly-
nomials in several variables on parallelepipeds in Euclidean spaces.
Another result in uniform norm for ordinary multivariate polynomials was
obtained by Zirnova (see [20]). The extension of Fekete’s theorem to
L,-norms and univariate generalized polynomials is given in [15].

In this paper, we obtain estimates for the L,-norms of minimal integral
generalized multivariate polynomials. Before stating our main results we
shall introduce the notation which will be used throughout the paper.

Let py(xy) and ui(xy), k=1, .., m, be weight functions defined on the
segment [a,, b, ] (non-negative summable functions which assume the
value zero only on a set of measure zero) and denote by L?,,([a, b]),
p =1, the class of all real functions f(x) defined on [a, b] for which the
product v(x) | f(x)|? is summable on the segment [, b]. For each k, let
Gres 1 (Xi)s s Py m (X), -..r b @ finite or denumerable infinite system of linearly
mdependent functions belonglng to L Pk(xk)([ak, bi]) N L2y ([ aies bic])
Applying the Schmidt orthogonalization procedure, we obtain an ortho-
normal system @y, 1 (Xg), «s Op; n, (Xg), .., With respect to the weight function
Pr(x;) on [a,, by ], which satisfies the relations (see [17])

03
¢k;i(xk): Zbk;ijwk;j(xk)a i=1,..., Ny, bk;ij=0 1fl<]9 (11)

Jj=1

where the matrix of the coefficients Ay, ,, is the lower triangular matrix
given by

Ak _Ak ny (bk 1]) Wlth bk ii (Ak I/Ak i— )1/29 (12)

4. ; being the Gram determinant of the system of functions {¢,.,(x;)}:_,,
Ay.o :=1. From (1.1) we have

by,
bk; ii =j Pr(Xk) ¢k; A(xe) Wy, (X)) dxy
e
and from (1.2)

1/2 1/2
|Ak|:bk;ll "'bk;nknk A/ - A / .

knk

Our first result generalizes Theorem 1 in [15] to several variables:
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THEOREM 1.1. There exists a generalized polynomial
n

Onvn (¥1s s X = 3 o0 D o i (51) o e (%), (13)

k=1 k,=1
with rational integral coefficients, not simultaneously zero, such that

b, b,
Inl---nm ::J‘ j ul(xl)"'um(xm) |Qn1-<-nm(xla ey xm)|1’dx1 “'dxm

a Im

< 1_[ <n1i;1Aﬁ{(2ni) Zl: Ni;li>! (14)
i=1 =1

where
Nlj._j w(x) log ()| dx, i=1, .. m. (1.5)

The proof of Theorem 1.1 is given in Section 2. In Section 3, we show that,
in some particular cases, the estimate obtained in Theorem 1.1 is
asymptotically optimal. In Section 4, Theorem 1.1 is applied to give upper
bounds for L,-norms of ordinary polynomials.

Our second result extends to L,-norms a result of Aparicio (see [1,4])
for the L,-norm. It is stated as follows:

THEOREM 1.2. There exists a generalized polynomial

Qh(x17'“5 xm): z akl-ukm(pl;kl(xl)"'¢m;km(xm)7 m>2> (16)

ki+ - +k,<h
k

im=

with rational integral coefficients, not simultaneously zero, such that

bl bm
L= [ [ (60) + t(6) [ QX1 s )| 7 iy o,

[T (11 )
r=1
h\?~!
X< > Z (Nl L Nm,lm)9 (17)
m L+ I <h

1

where N, ; is given by (1.5).

Theorem 1.2 is shown in Section 5. Section 6 contains applications of
Theorem 1.2 to ordinary polynomials.
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On the other hand we consider quasi-polynomials with rational integral
coefficients of the form

n

L 71 m
Qn1~--nm(x1a--'9xm)= Z Z akl--»kmxllcl "'anm9 (18)

k=0  k,=0

where y4, ..., y,, are certain positive real numbers. We set

1 1
—2 . : 2
vnl..(flyl,-'— +nm)(y17"" ym): lnf J() J;) n1-~~nm(x1""’ xm) dxl '“dxm’

m
ny My

where the infimum is extended over the class of all non-trivial quasi-poly-
nomials of the type (1.8) and we write

V(1 e V) 2= 1M vy (P14 s Vi)

n1—>oo

The following result generalizes to several variables a result of Aparicio [2]:

THEOREM 1.3. Assume that nig=n, for all k. Then, the following
inequality holds:

V(P15 oo Vo) = MV, (D1, ey ) = €7 Ze=1 700
n— oo

where

= 1
(i) § Qr+D[2r+ Dy +17°

The proof of Theorem 1.3 is given in Section 7. In Section 8§ we obtain
bounds for v(yy, ..., y,,) In some particular cases.

Finally, Section 9 is concerning with univariate integral polynomials. Let
p(x) be a weight function defined on the interval [a, 5] and let {w,(x)} be
the corresponding orthonormal system of polynomials. We write

K,[a,b]:= max [K,(z, x)],
a<t<b
a<x<b

where



382 LUQUIN AND BESGA

We consider the set

?[a, b] :={ p(x) weight function : lim K "[a, b]=1}.

We define

pla,b]:= lim p,[a, b], p."a, b]:=min max |P(x)| (1.9)

PeH, a<x<b

and

a6 = min [ Q) pr)d,

where H¢ is the class of rational integral polynomials of degree less than
or equal to n, not identically zero. We prove the following theorem (for a
similar result, see [6]):

THEOREM 1.4. Let p(x)eP[a, b]. Then, the limit

t[a,b] := lim t,[a,b] (1.10)
exists and we have
tfa,b]=pla, b], (L.11)

where p[a, b] is defined by (1.9).

2. PROOF OF THEOREM 1.1

By substituting in the left-hand side of inequality (1.4) the corresponding
expressions (1.1) for the functions ¢y, (x1), ., @, (X,,) We Obtain

Lyomy= o [ (51t 5

a9 A

n,, ny
DI Xy -k, > b, 1,01, (X1) -

=1 k=1 =1

p
X Z bm;kmlmwm;lm(xm) dxl dxm
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By changing the order of summation and denoting by

ny Hyy,
Lll o, z akl-ukmbl;klll"'bm;kmlm
k=1 k,=1
(1<1i<”l’ l=1’ ’m) (21)

we obtain

Lo < [ [ G0 )

ay am

n n, p
| 3 XLy o ol o (el dd.
L=1 =1 (22)

We consider the system (2.1) of n, ---n,, linear forms with {oakl,,,km} as
unknowns. We claim that the determinant A of the matrix of the linear
system (2.1) is

A= A7l g e, (2.3)

This follows by observing that such a matrix is the matrix corresponding
to a change from the ¢y (X))@ - @ s (X,), 1<k <ny, .., 1<
K <n,, to the o, (x))® - Q@ (x,), 1<l <ny,.,1<l,<n,,
basis in the tensor product U;® --- ® U,,, where U, is the linear subspace
spanned by ¢ (x;), ., ¢y, n,.(xi)~

It is known [ 12] that the matrix 4, ® --- ® 4,, describing the change of
these bases is the Kronecker product of the matrices 4,, ..., 4,,, and the

m»>

determinant of this matrix of the transformation between them is
A=A,® --- ®A,,| =4, "m---|A, " "m-1.
Therefore, (2.3) follows from the fact that |4,] = 4,/>.

According to the Minkowski’s linear forms Theorem (see [19]), there
exists a system of rational integral coefficients {“kl---km}’ not simul-
taneously zero such that

|Ly,..q | S AM0womm) = A3/ g} O, (2.4)
Substituting (2.4) in (2.2) and taking into account that

(al+ +an)p<np*1(a{7+ +Cl£), (25)

the inequality (1.4) follows. |
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Remark 2.1. 1In the case of the quadratic norm and p;(x;) = u,(x,) for
all k, each system {w,. ;(x;)} 7, 1s orthonormal with respect to each
weight function u,(x;). Therefore, we get

s

Ly.n <

(n A1),

i=1

Remark 2.2. 1f the functions u, (x,) and {¢,.,(x,)} belong to C([a,, b ]),
then

m n;
max Uy (Xy) e Uy (X)) Qoo (X715 000s X)) | < I1 <A:’l/(2n,-) Y |a)i;l,-|>’

a <X <b i=1 =1

a,<x,<b,

where ||, ;| =max, . ., u;(x;) |@; ;(x;)|. For similar results, see [4, 18].
; L <x;<b; ;

Remark 2.3. 1In [20], trigonometric polynomials are used to show a
similar result to Theorem 1.1 for p = co and u,(x;) =1, for all k.

On the other hand, given m non-negative integer numbers n,, ..., 1,,, We
may consider the value g,, ..., defined by

b b
ar i it [ ()
" in...,,m a a
X|in~--nm(xl7'"sxm)|pdx1"'dxma (26)

where the infimum is extended over the class of all non-trivial generalized
polynomials with rational integral coefficients of the type (1.3).

Then, we have the following result:

COROLLARY 2.4. The inequality

o= lim o,. .,
nl—>oo

n_— oo
m

m m n;
> fim [ Ay gim ] <z N,

e TP =1 \=1

>—1/(p(n1 + - +my,))

i=1 1

(2.7)

n_— oo n_— oo
m m

holds provided that the limits exist.



INTEGRAL COEFFICIENTS 385
If p= o0 and the weight functions are continuous, we write

0—(n1+~~+nm):: inf max ul(xl)"'um(xm) |Qn1---nm(x17ma xm)|’

En -in
1 m
Oy, A SX1<hy

a,<x,<b,

where the infimum is extended over the same class of generalized polyno-
mials as in (2.6).
According to Remark 2.2, we have the following:

COROLLARY 2.5. The inequality

o= lim ¢, .,
n1—>w

n_— oo
m

m m n; —1/(ny+ --- +n,)
> lim [] 4;Y@utnt-tm) qim o ] <Z Iwi;l,.|>

n,— oo . n — oo . _
17 i=1 17 i=1 \;=1 (28)

n_— oo n_— oo
m m

holds if the limits exist.

3. OPTIMALITY

We present two examples for which the inequalities (2.7) and (2.8) are
optimal.

ExampLE 3.1. If p=1, pr(xp)=(1—xH" ug(x,) =1 and
[ar, b ]1=[—1,1], for all k, then the estimate (2.7) is optimal. We con-
sider the system of functions {¢.. (x)}={U,_;(x0)}, j=1, .. n,
k=1, .., m, of normalized orthogonal Chebyshev polynomials of second
kind with positive leading coefficient (as usual, we shall denote by R, (x)
a polynomial of degree n normalized so that its leading coefficient is 1).

Then

1 1
g, Myt = inf j f
—1 1

n m

ockl_l_kmeZ _
ot My N
X Z Z Wyt Uy =1 (1) -+ U —1(x)
k=1 k,=1
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2 Uil 10, il 5,

. 1 1 -~ ~
xinf [ [0, (x0) - Ty () +dl
—1 1

qgell —
X dxy ---dx,,

=T _allh, 1T, S

1 1 - -
<[ 0 O ()] iy i

where ||, ,, stands for the L,-norm with weight p,(x,), II is the space of
all algebraic polynomials with real coefficients in m real variables with total
degree at most n;+ --- +n,,—m—1, and the last equality follows from
[11]. Therefore

2 m/2
o.—(n1+~~-+nm)>2m <> ,

nypecc My T
which implies

c=lm o,., <l

n — o

-n,

We have 4, =1 for all k, and

1
Niy=] 10 ()] dxi=202/m)"”,

for all i, j. Therefore the limit as n, — o0, ..., nn,, > oo of the right-hand side
in (2.7) is also 1.

EXAMPLE 3.2. If pk(xk):(l—xlzc)_l/z, uk(xk)zl, [ak, bk]:[—l, 1]
and {¢y. ;(x)} ={T;_1(xp)}, j=1, .m, k=1, ..,m, where T, (x;) is
the normalized orthogonal Chebyshev polynomial with positive leading

coefficient, then the estimate (2.8) is optimal. We actually have
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Q)
m y,
= inf max )IREEEDY Wyt Ly —1(X1) - T —1(x,,)
Gk € TISMSUlp 4 g1
—lsxmsl
20Ty ilah, 1T alah, inf max b
—Isxs
—1<x,<1

A 1 7 1 7 h l 2
Tl T b T Tl >(5)

where the last equality follows by [ 8]. Therefore

1 —m/(2(n; + --- +n,))
in ceemy, < <>
T

and
¢= lm ¢, ., <L
n1—>w

On the other hand, it is clear that 4, =1, for all k, and

. . Sln if j=0,
W=7, = T.(x.)| =
e, ;I =17}l o x_ergliliul H(x))l { Aln i =1

i

Therefore the limit as n; — oo, ..., n,, > oo of the right-hand side in (2.8) is
also 1.

4. APPLICATIONS OF THEOREM 1.1

In this section, we apply Theorem 1.1 to ordinary polynomials. This
case comes up when the system of functions {¢,.;(x,)} is the power
sequence

¢k;i(xk):x;€_1, (i=1,..)

since, the corresponding orthonormal system obtained by the Schmidt
procedure, is an orthonormal system of polynomials {w;.;(x;)} on the
interval [ay, b, ].
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By specializing py(xz) =g (xp) = [ (xx —ap)(bp—x)]1 "2 k=1, .., m,
we obtain the following result for multivariate polynomials which
generalizes Theorem 2 in [15]. Theorems 4-8 in [15] can be generalized
in a similar way.

THEOREM 4.1. There exists a non trivial polynomial

Lt My,
in---nm(xla ey xm) = Z e Z ocklu-kmx]l(I o 'x]rcnm (41)
k=0  k,=0
with rational integral coefficients, such that
b, by M s
[ T L= @) (b= X017 1@y (X1 s X7 iy -+,
a n i=1

m AT T((p+ 1))
<l K”” S TP FRY ”>

b.— a.\Pril2
x 2Pmi/Cm+2) (4 1)1 <' 1 a,> } . (4.2)

Proof. Since ¢.;(x,)=xi"", i=1,..,n.+1, to apply Theorem 1.1 we
only need to replace n; by n,+1 in (1.4). Moreover, the polynomials

{@y.(x;)} are the Chebyshev polynomials {7.;(x,)}. In this case
— . n;(n;+1)

and for all i, j,

Nij= <2>m I(12) I((p+1)/2)

— l=p/2
- ATTESTRER Y Al (4.4)

Ny

[N

Therefore,

n;+1
(n;+ l)p_lAﬁl/.(f’ii_'—z) Z Ni;li
L=1
I'(12) I'l(p+1)/2)
I'(p2+1)

b;— a->””i/2
13 13

— 2p/2
<n + 2

ni> 2pni/(2ni+2)(ni+ l)p—l <

and the conclusion follows. ||

On the other hand if we take p,(x;)=[(x—a)(b,—x;)] Y and
u(x,) =1, for all k, we can assert the following:
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THEOREM 4.2. There exists a non trivial polynomial of the type (4.1) such
that

max Q... (X150 Xl

a<x <b;

ams;c;,;sbm
n;/2
<2(1/2)[n1/(n1+1)+ - +n,/(n,+1)] l_[ 1+f < > .
i=1
Proof. From Remark 2.2 we have

m n+1 .
max |Qn1~--nm(x1> () xm)| < H <A111{(-fqi+2) z |Ti;li>7

“1§’f1§bl i=1 L=1

a,<x,<b,

where |7, =1//m and | T, || =/2/n, i=1, ...,m, j=2, ... Using (4.3),
the conclusion follows.

5. PROOF OF THEOREM 1.2

The proof follows along the same lines as in the proofs of Theorem 1.1
above and Theorem 1 in [4] with the obvious modifications. We shall only
point out that the sum in (2.1) is now extended over all indices k; > 1 such
that ky + --- +k,, <h. Also, if D,,,, denotes the determinant of the matrix
of the system of linear forms involved, we have (see [4])

h—2 m ( s )
Dy ,,= n <n |Ak;h—s—l|> m=2

s=m—2 k=1

=h7ﬁ+l <ﬁ A1/2> hm:31)=h7ﬁ+l by, m]])(m 1) (5.1)

r=1 Jj=1

Remark 5.1. 1If p=2 and p,(x;) =u,(x,) for all k, we have

R RS R

r=1 m

(see [4]).
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Remark 5.2. In the uniform case (see [4, 18]), we get

max - uy(xy) -ty (X,,) |Q5 (X105 s X))
a;<x;<b

a,<x,<b,

h—m+1 m (h—r—l) (h)—l
-2
<|: <| | A]1€/’2r> " :| " Z ”wl;llﬂ ”wm;lmHa
k=1

r=1 L+ 41 <h

i1 (53)

where Hwi;jH =maX, <x <s, u;(x;) |wi;j(xi)|'

6. APPLICATIONS OF THEOREM 1.2

Let ¢y.;(xp), pr(xy) and u;(x,) be the same as in the proof of Theorem
4.1. Then

by =n'""?
and
bk;,.iz(zn)l/2<b"4“">i_l, k=1, om, i=2,..  (61)
Therefore
D= (2m/2)(h;,1) (nm/z)(fi,) Kbl 4”1>...<bm4a’">}(”il). (6.2)

Moreover for k=1, ..,m,i=2, .., the values of N,., and N,,; are as in
(44).

We observe that in this case, the expression (1.6) defines a polynomial of
total degree </ —m. Therefore, applying Theorem 1.2, we have the following
results to multivariate polynomials with m-unknowns and total degree <mn:

THEOREM 6.1. There exists a non trivial polynomial

0,(x1, . X,,) = > ook, X3+ X, m=2,  (6.3)
+
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with rational integral coefficients, such that

J J ﬂ [(xe—ar)(bre— X)) 172 100 (X 15 s Xp)| P dxy -+ - dx,,

< (2m/2)pn/(n+m) (nm/Z)p |:<bl ;al> o <bm;am>:|pn/(m+l) <n _’:_/lm>P—1
X <m><n> (1= p/2)m ) <2>pj/2 <F(1/2) I'((p+ 1)/2)>j
=0 \J/\J n I(p/2+1) '

THEOREM 6.2. There exists a non trivial polynomial of the type (6.3) such
that

M3

max |Qn(xls ) xm)|
a<x <b

a,<x,<b,

b,—a b,—a o & (m\/n\ ..
<2mn/(2(m+"))|:< L 1>< m mﬂ'"“ < >< > 202,
4 4 EO J/NJ

Proof. By Remark 5.2

max |Qh(x19 [} xm)|
a;<x;<b

a,<x,<b,

h—m+1 m h—r—l) (h)—l
_a ~ A
<|: H <n Allc/,2r> " :| " Z HTI;IIH'”HTm;ImH-
r=1 k=1 L+ - +l <h

,/

From this and (6.2), the conclusion follows. ||

THEOREM 6.3. There exists a non trivial polynomial of the type (6.3) such
that

jbl ,.,me |0,,(x1, .y X,,,)| dxy -~ dx,,

a am

m bl_al bm_am
<2< 2 >< 2 >
y by —a, bm—am> "/(’"+1)<n+m
4 4 m )




392 LUQUIN AND BESGA

Proof. If we consider p,(x;)=1[(x;,—a,)(b,—x;)]"* and u,(x,) =1,
for all k, then

b b _ i—1
brow= (n/2)1/2<2><k “"> . k=1l,..m i=1,.. (64)

4
and, for all %, i,
Ne.i=2(2/m)"2
Now, applying Theorem 1.2, the theorem follows. ||

THEOREM 6.4. There exists a non trivial polynomial of the type (6.3) such

that
J~b1 jbm

m
a 9n k=1
m

- <b —a1> <bm—am>2
<[=
2 2 2
y b,—a, bm—am> fm+ 1) p 4 m
4 )\ 4 m )

Proof. In this case, we consider p, (x;) = u, (x) = [ (xp —a,) (b, — x) ]V
k=1, .., m. Taking into account (6.4), the theorem follows from Remark
51. 1

[(xe— a0)(be — x) 12 Q2(xy, o X,) dxy - - dx,,

THEOREM 6.5. There exists a non trivial polynomial of the type (6.3) such
that

b b, ™m _ 172
jl[ 11 <bkxk> Q2(X 15 s Xpy) dxy -+~ dx,,

o)L=

Proof. Let py(x) =up(xy) = ((by — x)/(xp —a,))Y? k=1, .., m. Then

brcii= “2<b";“k>l/2<bk4ak> 71, k=1,..m, i=1,..

Therefore, from (5.2) the conclusion follows. ||
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Remark 6.6. 1f we consider the systems {¢,.,(x,)=xi"'}"F! on the
segments [ ay, b, ] =[a, b] and the weight functions p,(x,) = p(x,), for all
k, then, for a g fixed the polynomials wy. ,(x;)=w,(x;) and the Gram
determinants 4, , = 4, are the same for all k. To compute the determinant
D, ,, of the matrix which transforms the monomials {x§---x&} of total
degree <n, into the products {@y,; (X;) -+ @, (X,)} of total degree <n,
we observe that k,-=e,-~|—1 and, therefore, the condition e, + --- +e¢,,<n
becomes k;—1+ --- +k,, —1<n which implies h=n+m. Moreover,
by.i="by, for all k. From this and (5.1), we have

i

n+1
n+m r
Dnm 1‘[ bm( 1),

r=1

For example, if p(x;)=u(x;)=[(x;—a)(b—x;)] "2 k=1, .., m, and
p=2, Remark 5.1 together with (4.3) yields the estimate

f f H [(xe—a)(b—x) 17 Q2(xy, sy X,,) doxy -+ dX,,

bh— 2nm/(m+1)
< gl <4 ”> (” ;m> (65)

If b —a, <4, for all k, Theorems 4.1, 4.2, 6.1-6.5, and the inequality
(6.5) show the existence of multivariate polynomials with rational integral
coefficients, not simultaneously zero, with arbitrarily small norms.
Moreover, Theorems 6.1-6.5 show that such polynomials exist if
(by—ay)---(b,,—a,,) <4™

On the other hand, Theorems 6.1, 6.3, 6.4, and 6.5 are extensions to
several variables of Theorems 2, 4, 5, and 6 in [ 15], respectively. Theorems
4.2 and 6.2 above extends Fekete’s Theorem (see [9,4]).

7. PROOF OF THEOREM 1.3

By Remark 2.1, we have

m

—f j Q% (X1s o X)) doxy o, < (n+ 1) [[ AYEED.

k=1
From the last inequality and the definition of v, *™(y,, .., 7,,), we have

> —1/(2mn(n+1))

n(ylr' sym)>(n+1 _1/(2n)<n Ak n+1 (71)
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n

Since 4;., . is the Gram determinant of the system of functions {xf:k} o
we have

> —1/(2mn(n+ 1))

<n Ak;n+1
k=1

m n Yk k| 1 V/(2mn(n+1))
. 1:[ {U 1 4 2i%) ﬂ llt:_jy: }
S [ (s
S {2mn<n+1> 2 |G 02

i#s
Passing to the limit in (7.1) when n — oo, and taking into account (7.2), we
obtain
X%+ yyk
XV —

dx dyﬂ (7.3)

V(715 s Vi) >eXp{§ <2mJ f

It is known that
1 ¢t ot
- In dx dy = —Ji 74
2£, L xay= go(2r+1)[(2r+1)yk+1] ) (74)

(see [2]). The conclusion follows from (7.3) and (7.4). ||
Remark 7.1. Since J(y,) >0, for all k, we have

x7k+ y)’k © 1

X7 —

v(yla ) ))m) >1

and then

lim v, 2"

n— oo

V15 - 9ym):O'

Consequently for each m-tuple of positive real numbers y4, .., y,,, there
exist quasi-polynomials Q,,...,(xy, ..., X,,) of the type (1.8) with arbitrarily
small quadratic norms.

8. EXAMPLES

We consider some particular cases.

(a) If y,=2, for all k, then J(2)=3>,2/((4r +2)(4r+3)) =n/4 —
3In 2. Therefore,
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(b) If y,=1, for all k, then J(1)=>7, 1/((2r+1)(2r+2))=In2,
and from Theorem 1.3 we conclude that

2<v(1, ., 1)

Howewer, this bound can be improved. According to definition (1.9), we
write

pi=pl0.11,  p;"i=p,"[0.1]. (8.1)

The existence of the limit p was proved by Schnirelman (see [7, 10, 16]).
It is known that (see [7])

236 <p<2376...

Therefore,

1 1
v [ e [ 0200 Q3 diy - dix,,

0 0

<[ max Q7(x)]"=p, ™,

0<x;<1

where 0% O, (x) e H¢ is a polynomial such that its uniform deviation from
zero on the interval [0, 1] is least. We therefore have

236<p<v(l, ..., 1).

On the other hand, we can use the method by A. O. Gelfond and L. G.
Schnirelman [13] to find an upper bound. For each positive integer n,
let Q, denote the least common multiple of {1,2,..n}, and let
0,.. .(xq, .., x,,) be a rational integral polynomial which deviate the least
from zero (quadratic norm) among all rational integral polynomials of the
type (1.8) with n;,=n for all i. Then

1 r
.Q’Z';HJ J Qi X1, Xx,,)dxy - dx,, =1
0 0
and
y 2] 1)= !
n---n LR /Qm
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Hence

InQ,,.,

1 L.,1)<
nvn-un( b 9 ) 2n

Since In Q, <z(n)Inn, for all n, where n(n) denote the number of prime
numbers less than or equal to n, we have

2+ 1)In(2n + 1
Inv(l, .. )= limInv, (1,..1) < lim 220+ 1D In@n+1)

n— oo n— o 2n

We conclude that

=1.

(c) If ye=1/2, for all k, then J(1/2)=>2,2/((2r+1)(2r+3))=1.
Therefore

v(i, .. H=e
(d) Ify,=1and y,=1/2, then

V(L 3)=v(3, 1) >(2e)"

9. PROOF OF THEOREM 14

The proof being essentially the same for any segment [a, b], we shall
restrict to the interval [0, 1]. Let R,(x) and Q,(x) be two polynomials
belonging to H¢ of minimal diophantine uniform and L, deviation from
zero in [0, 1], respectively, that is, such that

p"=R,, and 7=t 72[0,1]1=]0,]3.

n

Then

1
103 IR IR, | plx) .

and, therefore,

T Mp T, (9.1)

n

where M = {§ p(x) dx.
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To obtain a lower bound for 7, 2", we consider the function Q2(x). The
Fourier series for this function is

=3 o (=] G0 pdv)

The function Q2(x) is continuous on the segment [0,1]. It therefore
achieves its maximum value in this segment, so that there exists a point
te[0, 1] such that

Pr " < Qull% = 05(0).

But at the point ¢ we have
2 ! 2
03(1) = Kau(t,x) Q3(x) p(x) d
and, therefore,
1
P <Ky | 03) plix) dy = Koy 1", (92)

where K,, :=K,,[0, 1]. Thus, by (9.1) and (9.2), we have
MYy <7, <KYp,. 93)

Since p(x)e 2[0, 1], the inequalities (9.3) and the existence of p in (8.1)
show the equalities (1.10) and (1.11) for the segment [0, 1]. ||
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